

A New Energy Future for Montana, Idaho, South Dakota, Wyoming, the Pacific Northwest and the Nation

CO₂ Sequestration in Saline Formations: Grand Ronde Basalt, Big Sky

Technical Lead and Partners

- BSCSP Lead: B. Peter McGrail, Battelle Pacific Northwest Division
- Field Test Partners: BSU, INL, ISU, LDEO, LANL, UI
- Field Test Information:
 - Field Test Name: Basalt and Mafic Rock Field Validation Test
 - Test Location: Eastern Washington State
 - Amount and Source of CO₂: 3,000 MT

Cost and Key Dates

- Total Field Project Cost: \$6,238K
 - DOE Share: \$5145.2K
 - Non-Doe Share: \$993.2 16%
 - *Does not include TBD cost share associated with Drilling, CO2 purchase, and MMV.
- Field Project Key Dates
 - Baseline Completed: 11/30/2006
 - Drilling Operations Begin: 12/30/06
 - Injection Operations Begin: Fall 2007
 - MMV Events:
 - 3/31/2006 Workshop
 - 6/30/2007 Baseline MMV
 - 12/30/2009 Post Injection Coring

BSCSP Geologic Approach

- Take advantage of reactive properties of CO₂
 - Identify sequestration targets with multiple trapping mechanisms (hydrodynamic, solubility, mineralization)
 - Emphasize mineral or other chemical reaction trapping
- Develop robust geologic sequestration options to permanently store CO₂
 - Conversion to alkalinity and carbonate minerals

Reactive Trapping of CO₂

 CO₂ is converted to solid phase carbonate minerals (e.g., calcite) by accelerated rock weathering reactions

$$CaAl_2Si_2O_8 + H_2CO_3 + H_2O \rightarrow CaCO_3 + Al_2Si_2O_5(OH)_4$$

$$CaMgSi_2O_6 + Mg_2SiO_4 + 4H_2CO_3 \rightarrow Mg_3Ca(CO_3)_4 + 3SiO_2 + 4H_2O_3$$

Rationale for Basalts

- Capacity and Retention
 - Columbia River Basalt Group covers 164,000 km²,
 >174,000 km³
 - Chemical makeup favorable for mineralization reactions
 - Large capacity
 - ~100 GtCO₂ storage capacity (McGrail et al. 2006)
 - 33-134 GtCO₂ storage capacity (GWG methodology)

Growing Public and Industry Interest

- Energy Northwest
 - CO2 capacity estimates for IGCC plant
- Portland Energy
 - Public outreach
- Idaho Congressional inquiry
 - Carbon Sequestration Committee
- Puget Sound Energy
 - Public outreach
 - Board of directors meeting

Location of Basalt Pilot

Basalt and Mafic Rock Field Validation Test

- 3000 MT of CO₂ transported by rail from refinery
- Utilize existing deep well infrastructure to minimize drilling costs for injection and monitoring
- Target is Grande Ronde basalt formation (1100 m depth)
- Post injection core sampling to verify mineralization reactions
- Validate supercomputer simulations of CO₂ dispersion, dissolution, and trapping in basalt using suite of geophysical, hydrologic, and tracer methods

Results to Date

- Transport models
 - TOUGHREACT
 - STOMP
- MMV Master Document
- Permitting
 - NEPA CX
 - State Injection well permit
- CO₂

Path Forward

- Drilling to begin 12/06
 - Significant cost savings
- MMV plan implemented
 - Norway
 - France
 - Russia
- Infrastructure assessment
 - Plumbing
 - Well completions
 - Sampling methods

Schedule and Milestones

Task 2.0 - Basalt and Mafic Rock Field Validation Test	Ω1	02	Q3	Q4	01	Ω2	Q3	Q4	Q1	Q2	Q3	Q4	Ω1	Q2	Q3	Q4
Task 2.1 - Planning and Permitting		Q2	Q3	Q4	QI	Q2	Ų3	Q4	Q1	Q2	Ų3	Q4	QI	Q2	Ų3	Q4
Pilot oversight and supervision					Gm5											
Develop permitting material			Gm2		Cilio											
Pre injection modeling			OHE													
Task 2.2 - Site Preparation and Characterization																
Surface site preparation																
Well development																
Geochemical sampling and hydrological testing																
Completion of pre-injection								Gm20								
Task 2.3 - Injection																
Purchase CO ₂ , tracer and equipment																
Develop surface infrastructure																
Conduct CO ₂ injection								Gm8								
Install well seal									Gm21							
Task 2.4 - Site Monitoring and Verification																
Develop MMV plan		Gm1														
Conduct base line MMV							Gm7									
Collect and analyze post injection fluid samples																
Conduct surface based monitoring			i													
Drill deviated core hole; conduct core and core hole analyses															Gm15	
Post injection modeling and data interpretation																Gm16

Gm1	3/31/2006	Convene Basalt Pilot MMV Kick-Off Meeting with international
		partners
Gm2	6/30/2006	Complete and submit application for Class V Basalt Pilot injection
		well permit
	9/30/06	Issue NEPA CX Application documents
Gm5	12/31/2006	Complete and submit detailed project design package for Basalt
		Pilot to DOE
		Commence drilling operations
Gm7	6/30/2007	Complete and document Basalt Pilot site base line MMV
		characterization
Gm8	9/30/2007	Initiate injection of carbon dioxide for Basalt Pilot
Gm15	6/30/2009	Collect Basalt Pilot post injection core
Gm20	9/30/2007	Completion of pre-injection testing
Gm21	12/31/2007	Install well seal
Gm16	9/30/2009	Complete final topical report on field Basalt Pilot validation test

Key Issues

- Permitting
 - Injection permit 6 months?
 - Educate regulators
- Increased drilling cost
 - Rig time
 - Steel
 - Availability
- CO₂ direct negotiations